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Summary—The characteristic impedance of rectangular coaxial

transmission lines can be readily and accurately computed by a

simple equation when the capacitance per unit length is known.

While the capacitance per unit length of the parallel sides is easily

calculated, the calculation of the corner capacitance is a more difficult

problem. This problem has been solved by Skiles and Higgins,

using orthonormal block analysis. By using their formulas, the

corner capacitances for a wide range of all variables were evaluated

by means of a digital computer. The results are cataloged in graphi-

cal form.

1. INTRODUCTION

ECTANGULAR coaxial transmission lines are

R
becoming of increasing importance as high-

quality transitions from round coaxial trans-

mission lines to strip transmission lines [1], as desirable

structures in which to mount garnet materials for solid-

state microwave devices [2], and as low-capacitance

mounts for varactor diodes [3].

The analysis of such lines has been the subject of sub-

stantial research in attempts to find a simple and precise

expression for the characteristic impedance of high-

current busses in the rectangular coaxial configuration.

This work is referenced by Skiles and Higgins [4] in the

same paper in which they give the technique for cal-

culating the characteristic impedance for all sym-

metrical configurations to any desired degree of preci-

sion. This technique is known as orthonormal block

analysis, and will be discussed in Section II. The com-

puting and cataloging of a large number of cases so that

the desired information may be obtained directly re-

mained undone,

A method of cataloging was derived from the analytic

solutions of Chen [5 ]. The diversity of Chen’s solutions

and the conditions required for their accuracy made it

difficult to establish which solution best described each

problem. In the attempt to unify these solutions, a

cataloging system [6] was devised in the form of a single

graph. Chen’s analytic solutions were exact for all cases

of a rectangular coaxial transmission line in which

w/lz> 1 and b/g> 1 [dimensional symbols as in Fig.

1 (a)]. Cohn derived an exact solution for the case in

which b/g = O [7] and a very accurate solution for the

case in which g/lz <0.2 [8]. Anderson [9] derived an

exact expression for the case in which g/h= 1.0. The
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Fig-. l—(a) Cross-sectional view of rectangular coaxial transmission
line and the e,quati?n determining its cha~acteristic impedance
with an alr dielectric. The “corner capacitance C“ is given in
Figs. 6–1 1. (b) Quart:r section. of rectangular coaxial transmis-
sion line showing partial potentials in each region.

solutions of Getsinger [10] are accurate for most cases

in which g/h< 1.5 and for some cases in which g/h> 1.5

(b/g> 0.8). For some values of g/h> 1,5 and at w/h> 1,

no accurate expressions exist for the characteristic im-

pedance of rectangular coaxial transmission lines. In this

paper, solutions are given with a known degree of

accuracy for a wide range of all variables.

The characteristic impedance 20 of a TEM trans-

mission line is a function of its capacitance per unit

length C’, according to the relationship 20= (cC’)–l in

which c is the speed of light in the dielectric between the

conductors. I n a rectangular coaxial transmission line, a

substantial part of the capacitance per unit length is

attributable to the capacitance between parallel planes.

The remainder is contributed by the fringing capaci-
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g/h

Fig. 2—Corner capacitance for w)h= 5 showing regions of applica-
bility for other theoretical derivations. The ratios for 50 ohm
Triplate stripline is also shown.

tance at the corners. This corner capacitance is the only

difficult factor to determine. Fig. 2 is a graph of this

corner capacitance in which w,’k ~ 1 and also illustrates

the regions over which the above mentioned analyses

pertain.

II. NIETHOD OF ORTHONORMM, BLOCK ANALYSIS

To obtain the capacitance C’ and consequently the

corner capacitance C, Skiles and Higgins [4], and Skiles

[11 ] have used a mathematical method known as

orthonormal block analysis [12], [13]. In this method,

the region to be analyzed is considered to be composed

of smaller regions (blocks) that overlap each other. For

each block, a primary potential function satisfying the

appropriate partial differential equation is assumed to be

expressible in orthonormal functions. Similarly, two

auxiliary potential functions are thus expressed. These

auxiliary functions satisfy some of the same boundary

conditions as the primary functions.

By making the appropriate finite Fourier transforms

of the partial differential equations, one obtains rela-

tionships involving the unknown coefficients of the

potential expansions. From the use of boundary condi-

tions and of elimination, these relationships can be re-

duced to dependence upon two infinite systems of

simultaneous linear equations involving only two sets

of unknown quantities. From the solutions of these sys-

tems, values of all the coefficients are obtained, and all

the potentials are thereby determined.

For the specific case of the capacitance C’ of a rectan-

gular coaxial transmission line, these potentials are sub-

stituted into a general integral for capacitance, and a

subsequent integration is made around the contour of

the region. By way of illustrating the method as ap-

plied by Skiles [11] to this case, an outline is presented

in Section II 1.

II 1. THE CAPACITANCE OF A RECTAN~UL~R CO~XI~L

TRANSMISSION LINE

Laplace’s Equation and Potential Functions

For the rectangular coaxial transmission line, the

region to be considered is that between the inner and

outer conductors, as shown in Fig. 1 (a). However, from

the symmetry inherent in the line cross section, it is

sufficient to consider only one quarter of it, as illus-

trated in Fig. 1 (b). In this region, a potential function

U is assumed to exist, which has a zero value on the

outer conductor and a value of UO on the inner conduc-

tor. Since the field contains no sources, the U satisfies

Laplace’s equation:

7U CYu
@Ll = —+— = o.

8X2 d yz
(1)

The primary and auxiliary potentials, which, taken

together or separately as required, comprise the po-

tential U, may be expressed in the orthonormal series;

~1(% Y) = 5 -f~(~) sin (hry/h), Region OIBCG ‘
k=J

cc

W2(Z, y) = ~ vk(y) si~t (krx/g), Region O/l EF
k=l

.

%(x, y) = Z d~(~) sin (kmy/k), Region IOA DG
k-1

.

%(x, y) = Z Wk(y) Sin (kmX/g), Region 1~~ DC

where ~~(x), v~(Y), ok(y), and w~(Y) are Lmknown Co-

efficients to be determined by the boundary conditions.

It will be assumed that these partial potentiallsll?~, XLZ,01,

and % also satisfy Laplace’s equation. In terms of the

partial potentials, the potential U becomes



490 IEEE TRANSACTIONS ON IMICROWAVE THEORY AND TECHNIQUES September

u = Ul(x, y) = ‘VI(X, y), Region ABCD

g<x<g+w/2

O<y<h

U = UI(%, y) = ‘Z’I(X, y) + %(x, y), Region OADG

O<x<g

O<y<h

u = U,($, y) = Vz(a?, y), Region DEFG

O<x<g

lz<y<h+b/2

U = U,(X, y) = T,(x, y) + %(z, y), Region OADG
I

O<x<g ‘

o<y<h 1

Boundary Conditions

To determine the unknown coefficients of the partial

potentials (2), the boundary conditions are required.

Thus

1) At y=O, we have

10-1. U,(X, o) = ‘PI($, o) + $’1(% 0) = 0,

]

I

(3)

we have

2°-2, UI(X, h) = Uo + %(x, h), O<x <g.

Since XUz(x, y) is continuous across y = k, then from the

last two equations of (3), it follows that

2°-3. O,(X, h) = O, O<x <g.

The relation between the functions U1and Uzat y= h is

If we take

1°–2. V,($, o) = o,

then we have

1°-3. %(x, 0) =

Furthermore, we have

1°-4. U2(X, o) = ‘V2(X, o)

2) At y= h, taking

2°-1. Vl(x, h) = UO,

.—

o<x<g+ w/2. (4)

o<x<g+ w/2,

o, O<x <g.

+@,(x, o)=o, O<x <g.

o<x<g+ w/2

2°–4. tll(x, h) = Uz(x, h), O<x <g.

Since Qz and dQJdy are continuous across y= h, then,

for no discontinuity in d UJdy, it follows from the last

two equations of (3), that

()d +2

2°–5. — = o, O<x <g.
dy ~.h

3) At y= h+b/2, for no discontinuity in d U/dy, we

must have

H(3*2

3°-1. == o, O<x <g.
dy ~=b\2

kzr.v

()

kzrx
f,(x) = A, sinh

()
~ + Bk’ cosh ~ – : (–1)’UO

kmy

()

k~y

()
zIj.(y) = Mk sinh — + ATh cosh — — ; (–1)’UO

g g

The boundary conditions at x = o, x = g, and x = g+zw/2

can be similarly obtained.

Coe@cients of Potential Expansions

By making finite Fourier transforms of Laplace’s

partial differential equation,

(5)

where d is g or h, z is x or y as the case may be, and .?7{ is

any of the partial potentials listed in (2), we obtain the

following relationships involving the unknown co-

efficients of the potential expansions:

‘k(x)= ‘k’sinh(a+ckco’h(%)+(-’)k%+(-’)+%’)[(’:)+k’r
“[(’:)sinh(?)-ksinr%?l

()ZW(Y)=Lk Sinh ~

[( ). $~’sinh

()+Fkcosh % + (–

fw’i?)l

2 Uo
l)k

-z-+ (-’)k:zf~(g)[(’+} +k’l’

i

I

\ (6)

I
I

I

I
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Upon applying certain of the boundary conditions,

eliminating coefficients, and after several transforma-

tions, one obtains two sets of infinite systems of simul-

taneous equations,

(7)

from which the coefficients can be obtained. In (7),

h(-l)kBk’
Xk = k

kg

()
g sinh ~

k(-l)~Nk
Yk=k —

k~lz

()
g sinh —

g

‘“p=‘inhr<)coshr;)lcosh[’”(ii)++1

Capacitance of Rectangular Coaxial Transmission Line

(8)

Since from (6) and the boundary conditions (4) it can

be shown that f~(x) and zI~(y) depend upon B~’ and N),,

respectively, then,

WI= Uof+~(–l)~UO~~sin
k=l Hsinh(?)sech[k”(:++)lcosh[k”(”v-w’g”] 1

g‘k (?)sinh(%)sech[k”(i+31cosh[k”L-:--b~d”“)T2=7_JO:+~(- l)~?701Y sin
g k=l

From a consideration of the region involved, it can be

shown that these two partial potentials are the only ones

that need to be used in obtaining the capacitance of the

line.
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Now the capacitance per unit length of a line, in bounds, we substitute K for all the X’s and Y’s in

rationalized mks units, is given by (7) and solve for the largest value of K. Thus, we ob-

C1– eS( )-=dS,
Uo s dn s

obtain,

(10)
K2Bk/(1-&h.)

where d U/c3n is the normal derivative of the potential
and

and S is the length of the perimeter of the line cross sec-

tion. With the values of U as given by (9),

JW [1C’ .4, —+L+L L+L
\21z2g3gk

Ig’@Yp
— —

[() ~ ,~~%+5=’22’ , (11)T ~=1 P’ 1)
where mP and nP are given in (8).

IV. THE CORNER CAPACITANCE

The quantity 4e(zu/2h+b/2g) is that which is nor-

mally associated with the capacitance of parallel plates.

Thus the remainder of the right term of (11) maybe con-

sidered as the capacitance associated with the four

corners. For one corner, the capacitance is

In evaluating C, the two infinite systems of simul-

taneous equations (7) are solved by using finite systems

derived from these equations. Upper and lower bounds

of the Xb’s and Yh’s are found, and are then improved by

iteration techniques. The method used here is partly

outlined by Skiles [11 ]; the theory is given by Koyalo-

vich [14], and Kantorovich and Krylov [15 ]. To obtain

the first approximation of the lower bounds, we write

(7) in the following way:

p=]
N

~, k=l,2, . ..fv (13)
..

~k = ~ Ckp~D + Dit
~=1 J

and

~k=o )~k=() ‘
k= A’+l, <’V+ 2,...,

If the second of (13) is substituted into the first, then,

k=l,2, . ..lV (14)

is obtained. The coefficients and free terms in (14) can

be readily evaluated. The ~~ are obtained by substitut-

ing the values of the J?k’s into the second of (13).

To obtain the first approximation of the upper

(15)

~<&/(&~kv)

and use the largest K value. According to theory,

ark < K

)
k=l,2, . . . .

Y,<K ‘
(16)

More exact upper bounds on the X~’s and Y“s are found

by using (7) in which K replaces the Xv’s and Y“s for

k> N. Thus, we have the equations

~k=$j&p?p+K ~ @p+Bk
,=1 p%v+l

N 1
,k=l,2, . . .A7, (17)

cc

p=l ,=Iv+ 1 J

with

~k=K

}
k=,\T+l, AT +2,....

~’=K ‘

To solve these equations, we substitute the value of Yh

from the second of equations (17) into the first, obtain-

ing

(
N

)
N

+ K ~ akp + ~ c,, “k, + ~ a:,pDP + Bk. (18)
p=’v+l Q=l ~=1

It can be shown from theoryl that the lower bounds

on the two infinite systems of simultaneous equations

(7) cannot be improved by an iteration process, but an

improvement can be realized in the case of the

bounds. The equations used for improving the

bounds are

k=l,2, .,. N

and

yki+l= ~i+l

}
k= N+l, A’ +2,..

~b’+l = Hi+l ‘

1 See Skiles [11], p. 112.

upper

upper

(19)
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where H’+1 is taken to be the largest of W~i+l or

T’i+l for all k > N, and

In the above equations (i) indicates the ith approxima-

tion of the upper bounds.

By means of an electronic digital computer, the value

of ~=~, ~h, and .~k, ~k can be readily determined for

numerous values of the parameters b, w, g, and k. If b

and w are zero or close to zero, then practical difficulties

are encountered in obtaining the upper bounds of Xk

and Yk. For example, if b is close to zero, then the series

in (18) is difficult to evaluate, since mfl in the numerator

of a~P approaches 0.5 slowly. This prevents the practical

application of a summing technique to the remainder of

the series when mP= 0.5. On the other hand, if b= O, mP

approaches unity fairly rapidly for large values of p.

This permits the use of a summing technique, but the

bounds cannot be readily improved. The essential im-

provement results from using a greater number of terms

in the simultaneous equations. To obtain a satisfactory

improvement in the bounds, an excessive number of

terms is required. Thus, the error associated with the

curves for b/g= O in the various graphs is greater than

that associated with the other curves for the corner

capacitance.

From (12), it will be observed that an upper bound on

the corner capacitance C is obtained for lower bounds on

the Jfk’s and Yk’s, whereas a lower bound is given by

upper bounds on the same quantities.

V. GRAPHS OF CORNER CAPACITANCE

Because solutions had to be found for a large number

of points to obtain the graphs and because computer

time increased rapidly when a large number of equations

is used for each point, it was desirable to limit the

number of equations used. The variation of the average

C/e and the number of equations required to obtain a

maximum deviation of 0.004 were estimated. Fig. 3

shows that, although the deviation changes consider-

ably with the number of equations, the average C/e does

not, indicating that the magnitude of difference between

the average C/c and the exact C/e is much less than the

deviation. Fig. 4 demonstrates the diminishing devia-

tion with a large number of equations. Because the

deviation diminished so slowly with increasing numbers

of equations, only fifteen equations were used for solv-

ing for the average C/e, which is used in Figs. 5–11.

105–

1,00-

95-
c/c

90-

w/h.5. O

b(g= 05

‘\;:_.,

AVERAGECIG ~ — +—-+—-:~
~ _+ —.+--

‘/

,-,6
@!@*

+

85 i , I -$-- 1
2 5’. ””10 50

NUMBER OF EOUATIONS

Fig. 3—Maximum, minimum, and average corner capacitance
from an increasing number of equations.

1 I .~o—-—
2“”5””””10 20 “

NuMBER OF EQUATIONS

Fig. 4—Decreasing deviation in corner capacitance with increasing
number of equations. The deviation is projected to show the
number of equotions required for a particular accuracy.

G
,.020-I /
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$.
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~
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I 1 ,
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Fig. 5—Deviation for fifteen equations for all curves of ‘Fig. 6.

2 Maximum deviation is maximum C/e less average C/e.
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g/h

Fig. 6—Corner capacitance for w/h =5.

0,2 0.5 1.0 2,0 %0

g /tl

Fig. 7—Corner capacitance for w~k = 1.

g/h

Fig. 8—Corner capacitance for w/k =0.8.
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Fig. 5 demonstrates the variation of the deviation

with fifteen equations over the range of parameters con-

sidered in Fig. 6. The deviation limits of 0.004 and

0.010 are shown on Figs. 6–11. These figures with inter-

polation then give the average corner capacitance for a

wide range of parameters with a known degree of

accuracy. For example, C/e for w/h= 2.0, b/g= 0.5, and

g/h = 2.0 can be obtained by interpolation from values

obtained from the graphs. Fig. 6 for w/lz= 5 gives

C/e= 0.614~ 0.004. Fig. 7 for w/lz= 1 gives C/e= 0.612

f 0.004. Interpolation for w/h= 2 then gives C/e= 0.613

~ 0.005. Substituting these values into the equation of

Fig. 1(a)

376.62
Zo = = 50.54 i 0.136 ohms

7.452 + 0.020

= 50.54 ohms f 0.27 per cent.

The error here is less than 0.3 per cent and may be

much less. Since the error in characteristic impedance is

lower than the error in corner capacitance, the graphs

provide greater accuracy in ZO than is apparent from the

graphs alone.

VI. COMMENTS

The values on the graphs [6] that were obtained us-

ing Chen’s approximation are reasonably close to the

values given by the exact solution of ,Skiles and Higgins.

The error in computing the curves of b/g= O in the

various graphs is greater than that associated with the

other curves (b/g= 0.02, 0.05, etc.).

The characteristic impedance of rectangular coaxial

transmission lines can be quickly and accurately de-

termined from the graphs presented here.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

R. Levy, “New coaxial -to-stripline transformers using rectan-
gular lines, ” IRE TRANS. ON hfICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-9, pp. 273–274; May, 1961.
F. J. Sansalo:! and E. G. Spencer, “Low temperature micro-
wave power hmter,” IRE TRANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. MTT-9, pp. 272–273; May, 1961.
R. V. Garver and J. A. Rosado, “Broad-band TEM diode
limiting, ” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-10, pp. 302–310; September, 1962.
J. J. Stiles and T. J. Higgins: “Determination of the character-
Istlc Impedance of UHF coawal rectangular transmission lines, ”
Proc. Nat’l. Electronics Conf., Chicago, Ill., vol. 10, pp. 97-108;
October, 1954.
T. S. Chen, “Determination of the capacitance, inductance, and
characteristic impedance of rectangular lines, ” IRE TRANS. ON
MICROWAVE T’HEORY AND TECHNIQUES, vol. M.TT-S, pp. 510-
519; September, 1960.
R. V. Garver, ‘[ZO of rectangular coax, ” IRE TRANS. ON MICRO-
WAVE THEORY AND TECHNIQUES, vol. MTT-9, pp. 262, 263;
May, 1961.
S. B. Cohn, ‘[Shielded coupled-strip transmission line, ” IRE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-3,
pp. 29-38; October, 1955.
— ‘[Thickness corrections for capactive obstacles and strip
cond~ctors, ” IRE TRANS. ON &!IICROWAVJI ‘rHEORY AIiD TECH.
NIQUES, vol. MTT-8, pp. 638–644; November, 1960.
G. NI. Anderson, “The calculation of capacitance cf coaxial
cylinders of rectangular cross-section, ” Trans. .4 IEE, vol. 69, pt.
II, pp. 728-731; 1950.
W. J. Getsinger, “Coupled rectangular bars between parallel
Dlates. ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES.
;o1. NiT’r-10, pp. 65–72; January, 1962.
J. J. Slciles, “Exact Analytic Determination of th,e Capacitance
and Characteristic Impedance of Coaxial Rectangular Trans-
mission Lines by the Use of Orthonormal IBlock-finalysi:, ”
Ph.D. Thesis, Dept. of Elec. Engrg., Llniversity of t’~isconsm,
hladisou, J\’is.; 1954.
B. L. Abramyau, “ Kruchenie i izgib prismatichesliikh sterzhnei
s polym pryamougol’nym secheniem, ” Pviklad*~a ya Matematika
i Mekhanika, vol. 14, no., 3, pp. 265–276; 19.50; transl., ‘(Torsion
and bending of prismatic rods of hollow rectangular section, ”
hTat ‘1. Advisory Committee for Aeronautics, TM 1319; Novem-
ber, 1951.
G. Grunberg, “A new method of solution of certain boundary
problems for equations of mathematical physics lpermitting of a
separation of x,ariables, ” ~. Plzys., vol. 10L pp. 301-320; 1946.
B. M. Koyalovich, “Researches on infimte systems of linear
equations, ” Ime.stiya .Yeklov Physics, vol. 3, pp. 41-167; 1930.
L. V. Kantorovich and V. I. Krylov, “Approximate Methods of
Higher Analysis, ” transl., C. D. Bernster, Interscience Pub-
lishers, Inc., New York, N. Y., 3rd cd., pp. 20-&t.; 195!3.


