Characteristic Impedance of Rectangular
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Summary—The characteristic impedance of rectangular coaxial
transmission lines can be readily and accurately computed by a
simple equation when the capacitance per unit length is known.
While the capacitance per unit length of the parallel sides is easily
calculated, the calculation of the corner capacitance is a more difficult
problem. This problem has been solved by Skiles and Higgins,
using orthonormal block analysis. By using their formulas, the
corner capacitances for a wide range of all variables were evaluated
by means of a digital computer. The results are catalogued in graphi-
cal form.

I. INTRODUCTION

ECTANGULAR coaxial transmission lines are
R becoming of increasing importance as high-
quality transitions from round coaxial trans-
mission lines to strip transmission lines [1], as desirable
structures in which to mount garnet materials for solid-
state microwave devices [2], and as low-capacitance
mounts for varactor diodes [3].

The analysis of such lines has been the subject of sub-
stantial research in attempts to find a simple and precise
expression for the characteristic impedance of high-
current busses in the rectangular coaxial configuration.
This work is referenced by Skiles and Higgins [4] in the
same paper in which they give the technique for cal-
culating the characteristic impedance for all sym-
metrical configurations to any desired degree of preci-
sion. This technique is known as orthonormal block
analysis, and will be discussed in Section II. The com-
puting and cataloging of a large number of cases so that
the desired information may be obtained directly re-
mained undone.

A method of cataloging was derived from the analytic
solutions of Chen [5]. The diversity of Chen’s solutions
and the conditions required for their accuracy made it
difficult to establish which solution best described each
problem. In the attempt to unify these solutions, a
cataloging system [6] was devised in the form of a single
graph. Chen’s analytic solutions were exact for all cases
of a rectangular coaxial transmission line in which
w/hk>1 and b/g>1 [dimensional symbols as in Fig.
1(a)]. Cohn derived an exact solution for the case in
which 5/g=0 [7] and a very accurate solution for the
case in which g/k<0.2 [8]. Anderson [9] derived an
exact expression for the case in which g/h=1.0. The
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Fig, 1-—(a) Cross-sectional view of rectangular coaxial transmission
line and the equation determining its characteristic impedance
with an air dielectric. The “corner capacitance C” is given in
Figs. 6-11. (b) Quarter section of rectangular coaxial transmis-
sion line showing partial potentials in each region.

solutions of Getsinger [10] are accurate for most cases
in which g/#<1.5 and for some cases in which g/k>1.5
(6/g>0.8). For some values of g/k> 1.5 and at w/h>1,
no accurate expressions exist for the characteristic im-
pedance of rectangular coaxial transmission lines. In this
paper, solutions are given with a known degree of
accuracy for a wide range of all variables.

The characteristic impedance Z; of a TEM trans-
mission line is a function of its capacitance per unit
length C’, according to the relationship Zo= (¢C')~! in
which ¢ is the speed of light in the dielectric between the
conductors. In a rectangular coaxial transmission line, a
substantial part of the capacitance per unit length is
attributable to the capacitance between parallel planes.
The remainder is contributed by the fringing capaci-
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Fig. 2—Corner capacitance for w/h=3 showing regions of applica-
bility for other theoretical derivations. The ratios for 50 ohm

Triplate stripline is also shown.

tance at the corners. This corner capacitance is the only
difficult factor to determine. Fig. 2 is a graph of this
corner capacitance in which w,/k>1 and also illustrates
the regions over which the above mentioned analyses
pertain.

II. METHOD OF ORTHONORMAL BLOCK ANALYSIS

To obtain the capacitance €’ and consequently the
corner capacitance C, Skiles and Higgins [4], and Skiles
[11] have used a mathematical method known as
orthonormal block analysis [12], [13]. In this method,
the region to be analyzed is considered to be composed
of smaller regions (blocks) that overlap each other. For
each block, a primary potential function satisfying the
appropriate partial differential equation is assumed to be
expressible in orthonormal functions. Similarly, two
auxiliary potential functions are thus expressed. These
auxiliary functions satisfy some of the same boundary
conditions as the primary functions.

By making the appropriate finite Fourier transforms
of the partial differential equations, one obtains rela-
tionships involving the unknown coefficients of the
potential expansions. From the use of boundary condi-
tions and of elimination, these relationships can be re-
duced to dependence upon two infinite systems of
simultaneous linear equations involving only two sets
of unknown quantities. From the solutions of these sys-
tems, values of all the coefficients are obtained, and all
the potentials are thereby determined.

For the specific case of the capacitance C’ of a rectan-
gular coaxial transmission line, these potentials are sub-
stituted into a general integral for capacitance, and a
subsequent integration is made around the contour of
the region. By way of illustrating the method as ap-
plied by Skiles [11] to this case, an outline is presented
in Section ITI.

I11. Tae CAPACITANCE OF A RECTANGULAR COAXIAL
TRANSMISSION LINE

Laplace's Equation and Potential Functions

For the rectangular coaxial transmission line, the
region to be considered is that between the inner and
outer conductors, as shown in Fig. 1(a). However, from
the symmetry inherent in the line cross section, it is
sufficient to consider only one quarter of it, as illus-
trated in Fig. 1(b). In this region, a potential function
U is assumed to exist, which has a zero value on the
outer conductor and a value of U, on the inner conduc-
tor. Since the field contains no sources, the U satisfies
Laplace’s equation:

- iU U 0 (
\Y " + oy . (1)

The primary and auxiliary potentials, which, taken
together or separately as required, comprise the po-
tential U, may be expressed in the orthonormal series;

Vi(z,y) = 2, felx) sin (kry/k), Region OBCG
k=1

Yoz, y) = 2 w(y) sin (krx/g), Region OAEF
k=<1

, (2)
Bu(x, y) = 2. ¢u(®) sin (kry/h),

k=1

Region 04DG

0

Bo(x, y) = 2 wi(y) sin (kxx/g),

k=1

Region 04DG

where fi(x), ve(v), ¢1(y), and wi(y) are unknown co-
efficients to be determined by the boundary conditions.
It will be assumed that these partial potentials ¥, ¥y, &y,
and ®, also satisfy Laplace’s equation. In terms of the
partial potentials, the potential U becomes
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Region 4 BCD
g << g+ w/2
o< y<h

U= Uix,y) =V, v) + ®1(x,v), Region OADG
o<x<yg

o<y <h
Region DEFG
o< x<g
h<y<h+b/2
U = Us(z, y) = ¥a(x, y) -+ $o(x,5), Region OADG
o<x<g

o <y<h

U= Uz, y) = Wz, ),

3)
U= Uz(x, y) = \I/2(x7 y): '

Boundary Conditions

To determine the unknown coefficients ol the partial
potentials (2), the boundary conditions are required.
Thus

1) At y=0, we have

1°-1. Uiz, 0) = ¥i(x, 0) + Pi(x, 0) = 0,
o< x<gt+w/2 ()
If we take
1°-2. ¥i(x,0) = 0, 0 < x < g+ w/2,
then we have
1°-3. &i(x, 0) = 0, 0o < x<g.
Furthermore, we have

1°=4. Us(x, 0) = Wz, 0) + Pa(x,0) =0, o <z < g

2) At y=h, taking

2°-1. Wy(x, k) = U,, 0 < x< g+ w/2

krx krx

fk(,\i) = Ak sinh <—h'—> + Bk/ cosh (7) —_— ;27; (—1)kU0

kmy

. kmy 2
m.(y) = M, sinh <——~> + N cosh *~> — — (=1D*U,
g g km

kmx b
¢r(x) = Dy’ sinh <—]—> + Cy cosh <4_> 4+ (—1)*

X
1 /3

(-5 () ()]

. kmy kmy
wi(y) = L sinh <——> + F} cosh <—> + (—1)*
4 g

{63 () (7)]
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we have

2°=2, Uiz, h) = U + ®:(x, &), 0 < x < g

Since Wy(x, v) is continuous across ¥ =k, then from the
last two equations of (3), it follows that

2°-3. By(x, h) =0, o<x<yg.

The relation between the functions Uyand Usaty=his

2°-4. Uiz, h) = Us(x, h), o< x<g

Since ¥, and d¥,/dy are continuous across y=~7, then,
for no discontinuity in d Us/dy, it follows from the last
two equations of (3), that

d®d,
2°-5. < ) = 0,
0y Jy-n

3) At y=h-+b/2, for no discontinuity in dU/dy, we
must have

\ Ve
3°-1. =0, o<x<g
8y Jy=vp2

o< x<g.

Theboundary conditionsatx =0, x=g,and x =g4w/2
can be similarly obtained.

Coefficients of Potential Expansions

By making finite Fourier transforms of Laplace’s
partial differential equation,

2 rd . [ kwz
——f VU sin| —— )} dz = 0, (5)
dJy d

where d is g or i, z is ¥ or ¥ as the case may be, and U’ is
any of the partial potentials listed in (2), we obtain the
following relationships involving the unknown co-
efficients of the potential expansions:

R [() ]
(6)
oot Zae(pg) +#]
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Upon applying certain of the boundary conditions,
eliminating coefficients, and after several transforma-
tions, one obtains two sets of infinite systems of simul-
taneous equations,

p=1

—Zmn+w
l

, (1)
Yk = Z ckpo + Dk[
p=1 J
from which the coefficients can be obtained. In (7),
(=1 B,
. kg
g sinh (—)
h
(—1) N,
I/yk = k —‘—‘—‘l< ) *
. krh
g sinh <—>
8
2k h My 2/ \?
tGhp=—— ———-————; B = <—>
T g AN kri\ g
—_— P“ + k2
g
2k n 2
==~ p=
T h Z\? kr?
_> p? + k2
h
. ph j)ﬂ‘b b /
m, = sinh [ — } cosh / cosh [:pr (—) + —:I
g 24 2g g
o (7)o (55) / o [ e (4 )
Hp = smh(- cosh | — /c h — :|
’ 7 2 U T

Capacitance of Rectangular Coaxial Transmission Line

Since from (6) and the boundary conditions (4) it can
be shown that fi(x) and 2:(yv) depend upon B, and Ny,
respectively, then,

Vi | [kmy kmg <w g>:| I: (\c——g—w/Z):|
e, o h _ s Y
0 —I— Z( 1) Ug P 51n< P >smh< p >sec [kw 2h+ P cosh .,

Vi | [krx\ | h b / (h —h—0/2)
Ty = Up— —{— Z (— 1)’“U0 — ——sin ( ) sinh <k7r~> sech |:k7r <— + ~>} cosh I:kru——— “
k g g 2 g g

From a consideration of the region involved, it can be
shown that these two partial potentials are the only ones
that need to be used in obtaining the capacitance of the
line.

._\,__.___.__._/
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Now the capacitance per unit length of a line, in
rationalized mks units, is given by

€ oU
C'=— ( > as,
U, an

where dU/dn is the normal derivative of the potential
and S is the length of the perimeter of the line cross sec-
tion. With the values of U as given by (9),

7 172 g
e
R PR RS [

E S 2w s 2]
=) X m — iy, (11
AG) s Sl an

where m, and », are given in (8).

(10)

IV. THE CorRNER CAPACITANCE

The quantity 4e(w/2h+b/2g) is that which is nor-
mally associated with the capacitance of parallel plates.
Thus the remainder of the right term of (11) may be con-
sidered as the capacitance associated with the four
corners. For one corner, the capacitance is

-G
G 2wz Sn]

In evaluating C, the two infinite systems of simul-
taneous equations (7) are solved by using finite systems
derived from these equations. Upper and lower bounds
of the X;'sand Yy's are found, and are then improved by
iteration techniques. The method used here is partly
outlined by Skiles [11]; the theory is given by Koyalo-
vich [14], and Kantorovich and Krylov [15]. To obtain
the first approximation of the lower bounds, we write
(7) in the following way:

(12)

y E=1,2,---N  (13)

and
Xr=0
~ s E=N4+1,N+2,.--,
Yi=20

If the second of (13) is substituted into the first, then,

N N N
Xy = Z( Z akpcpa> Xq + Z aipDp + B,
=1 =1 p=1
k=1,2,---N (14

is obtained. The coefficients and free terms in (14) can
be readily evaluated. The ¥, are obtained by substitut-
ing the values of the X;’s into the second of (13).

To obtain the first approximation of the upper
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bounds, we substitute K for all the X's and Y’s in
(7) and solve for the largest value of K. Thus, we ob-

obtain,
K> Bk/<1 — Zakp> (15)
p=1
and
p=1
and use the largest K value. According to theory,
X < K
=1, 2, (16)
Vi < K

More exact upper bounds on the X;’s and ¥’s are found
by using (7) in which K replaces the X,’s and Y}'s for
k> N. Thus, we have the equations

N 0
Xe= 2 a¥,+K 2, aip+ B

p=1 p=N+1

N B k=1,2, - - - N, (17)
Y = Z Ckpyp_}_ K chp + Di
p=1 p=N+1
with
Xe=K

- . R=NF1 N2
Yk=K} ’

To solve these equations, we substitute the value of ¥,
from the second of equations (17) into the first, obtain-

ing

Xy = Z( Z akp5m>Xp

g=1 p=1
o N N
+ K Z (akp + Z Cqp akq) -+ Z axpDyp + By (18)
p=N+1 g=1 =1

It can be shown from theory! that the lower bounds
on the two infinite systems of simultaneous equations
(7) cannot be improved by an iteration process, but an
improvement can be realized in the case of the upper
bounds. The equations used for improving the upper
bounds are

X, = depy + gt Z trp + Bs }

p=1 p=N+1
’

Vit = Z CepXpt+ HiH Z Crp -+ Di J[

p=1 p=N-+1
E=1,2,---N (19
and
_in+1 = it
— Y v
Vit = Hi+1} ’ k=N+1,N+2

1 See Skiles [11], p. 112.
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where H*'' is taken to be the largest of W+l or
1.1 for all 2> N, and
1054
N - © w/h»6.0
Vet = (Bk + Zakapi>/<1 - > akp> brge 05
p=1 p=N+1 .,oo; + g/h= 0.2
N _ o0 444*“"
et = (Dk -+ Z CAPAYPZ> /(1 — Z Ckp>. : s g
=t p=NEL Cre 95,-{ " AVERAGE C/€ :_\:\t“"‘t
In the above equations (%) indicates the 7th approxima- ) ot
tion of the upper bounds. vol el
By means of an electronic digital computer, the value : "
of X4, Vi, and X, Vi can be readily determined for : +
numerous values of the parameters b, w, g, and A. If b s - S - - —

and w are zero or close to zero, then practical difficulties
are encountered in obtaining the upper bounds of X,
and Y,. For example, if b is close to zero, then the series

Z Tiep
p=N+1

in (18) is difficult to evaluate, since m, in the numerator
of a4, approaches 0.5 slowly. This prevents the practical
application of a summing technique to the remainder of
the series when m,=0.5. On the other hand, if =0, m,
approaches unity fairly rapidly for large values of p.
This permits the use of a summing technique, but the
bounds cannot be readily improved. The essential im-
provement results from using a greater number of terms
in the simultaneous equations. To obtain a satisfactory
improvement in the bounds, an excessive number of
terms is required. Thus, the error associated with the
curves for b/g=0 in the various graphs is greater than
that associated with the other curves for the corner
capacitance.

From (12), it will be observed that an upper bound on
the corner capacitance Cis obtained for lower bounds on
the X's and Y)'s, whereas a lower bound is given by
upper bounds on the same quantities.

V. Grarus oF CORNER CAPACITANCE

Because solutions had to be found for a large number
of points to obtain the graphs and because computer
time increased rapidly when a large number of equations
is used for each point, it was desirable to limit the
number of equations used. The variation of the average
C/e and the number of equations required to obtain a
maximum deviation? of 0.004 were estimated. Fig. 3
shows that, although the deviation changes consider-
ably with the number of equations, the average C/e does
not, indicating that the magnitude of difference between
the average C/e and the exact C/e is much less than the
deviation. Fig. 4 demonstrates the diminishing devia-
tion with a large number of equations. Because the
deviation diminished so slowly with increasing numbers
of equations, only fifteen equations were used for solv-
ing for the average C/e, which is used in Figs. 5-11.

2 Maximum deviation is maximum C/e less average C/e.

NUMBER OF EQUATIONS

Fig. 3—Maximum, minimum, and average corner capacitance
from an increasing number of equations.
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Fig. 5 demonstrates the variation of the deviation
with fifteen equations over the range of parameters con-
sidered in Fig. 6. The deviation limits of 0.004 and
0.010 are shown on Figs. 6—11. These figures with inter-
polation then give the average corner capacitance for a
wide range of parameters with a known degree of
accuracy. For example, C/e for w/2=2.0, b/g=0.5, and
¢/h=2.0 can be obtained by interpolation from values
obtained from the graphs. Fig. 6 for w/h=5 gives
C/e=0.6144-0.004. Fig. 7 for w/h=1 gives C/e=0.612
+0.004. Interpolation for w/h=2 then gives C/e=0.613
+0.005. Substituting these values into the equation of
Fig. 1(a)

376.62

= ———— = 50.54 + 0.136 ohms
7452 + 0.020

0

= 50.54 ohms 4+ 0.27 per cent.

The error here is less than 0.3 per cent and may be
much less. Since the error in characteristic impedance is
lower than the error in corner capacitance, the graphs
provide greater accuracy in Z, than is apparent from the
graphs alone.

VI. CoMmMENTS

The values on the graphs [6] that were obtained us-
ing Chen’s approximation are reasonably close to the
values given by the exact solution of Skiles and Higgins.

The error in computing the curves of /g=0 in the
various graphs is greater than that associated with the
other curves (8/g=0.02, 0.03, etc.).

The characteristic impedance of rectangular coaxial
transmission lines can be quickly and accurately de-
termined from the graphs presented here.
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